M1.(a) Law of conservation of angular momentum applies and $I_{1} \omega_{1}=I_{2} \omega_{2}$
OR Law of conservation of angular momentum applies and angular momentum = I
ω
(because no external torque acts)
Adding plasticine increases $I \checkmark$
So ω must decrease to maintain I ω constant / to conserve angular momentum \checkmark
(b) $\quad I \times 3.46=\left(I+0.016 \times 0.125^{2}\right) \times 3.31$
$I=0.00552 \mathrm{~kg} \mathrm{~m}^{2} \checkmark 3 \mathrm{sf} \downarrow$
Useful: $m r^{2}=2.5 \times 10^{-4}$
Sig fig mark s an independent mark
If method correct but incorrect conversion of g to kg or mm to m, award 1 mark out of first 2 marks
(c) (i) $\Delta \mathrm{E}=1 / 2 I \omega_{1}{ }^{2}-1 / 2\left(I+m r^{2}\right) \omega_{2}{ }^{2}$ $=\left[1 / 2 \times 5.52 \times 10^{-3} \times 3.46^{2}\right]-$ $\left[1 / 2 \times 5.77 \times 10^{-3} \times 3.31^{2}\right] \downarrow$ $=1.39 \times 10^{-3} \mathrm{~J}$ J
CE for I of turntable or I of plasticine from $2 b$ Answers will vary depending on rounding e.g. accept $1.43 \times$ 10^{-3}
(ii) Work done against friction / deforming plasticine as it collides with turntable / to move or acclerate plasticine

Allow heat loss on collision
Do not allow energy to sound

M2.(a) (Gravitational potential energy of falling mass) is converted to linear/translational ke of mass and rotational ke of wheel
and internal energy in bearings / air around wheel \checkmark
(b) (Use of $m g h=1 / 2 m v^{2}+1 / 2 / \omega^{2}+T \theta$)

$$
m g h=2.94 \mathrm{~J}
$$

$$
(0.200 \times 9.81 \times 1.50)=\left(0.5 \times 0.200 \times 2.22^{2}\right)+\left(0.5 \times 1 \times 6.73^{2}\right)
$$

$$
1 / 2 m v^{2}=0.493 \mathrm{~J}
$$

$$
+\left(7.5 \times 10^{-3} \times 4.55\right)
$$

$$
T \theta=0.0728 \mathrm{~J}
$$

E_{ρ} or E_{κ} correct
If friction torque not worked out out, give up to max 2 marks. Give full marks if friction torque worked out and stated as negligible.

All E_{ρ}, E_{κ} and $T \theta$ correct

Leading to $/=2.41(3) / 22.6 \checkmark\left(=0.107 \mathrm{~kg} \mathrm{~m}^{2}\right)$
Gives
$I=0.108 \mathrm{~kg} \mathrm{~m}^{2}$
(c) $\quad \alpha=T / I=7.5 \times 10^{-3} / 0.107=0.0701 \mathrm{rad} \mathrm{s}^{2} \checkmark$
substitution of $\omega_{2}=0, \omega_{1}=6.73$ and α into $\omega_{2}{ }^{2}=\omega_{1}{ }^{2}-2 \alpha \theta$
leading to $\theta=323 \mathrm{rad} \checkmark$
OR
$1 / 2 / \omega^{2}=T \theta \quad 0.5 \times 0.107 \times 6.73^{2}=7.5 \times 10^{-3} \theta \checkmark$

$$
\theta=323 \mathrm{rad} \quad \checkmark
$$

Give CE if
$I=0.108 \mathrm{~kg} \mathrm{~m}^{2}$ used

```
    3.5
M3.(a) \(\quad(2 \pi \times 0.088)=6.3 \mathrm{rev}\) \(6.3 \times 2 \pi=39.8 \mathrm{rad}\) or 40 rad
OR
3.5 \(0.088=39.8\) or 40 rad
If correct working shown with answer 40 rad give the mark Accept alternative route using equations of motion
```

(b) $\quad \omega=v / r=2.2 / 0.088=25 \mathrm{rad} \mathrm{s}^{-1} \checkmark$
(c) (i) $E=1 / 2 / \omega^{2}+1 / 2 m v^{2}+m g h$
$=\left(0.5 \times 7.4 \times 25^{2}\right)$
$+\left(0.5 \times 85 \times 2.2^{2}\right)$
$+(85 \times 9.81 \times 3.5)$ $=2310$ J

+ 206
$+2920$ (= $5440 \mathrm{~J} \quad$ or 5400 J$)$

CE from $1 b$
$1 / 2 / \omega^{2}+1 / 2 m v^{2}=2310+210=2520 \mathrm{~J}$
$1 / 2 I \omega^{2}+m g h=2310+2920=5230 \mathrm{~J}$
$1 / 2 m v^{2}+m g h=210+2920=3130 \mathrm{~J}$
Each of these is worth 2 marks
(ii) Work done against friction $=T \theta$
$=5.2 \times 40=210 \mathrm{~J}$
Total work done $=\boldsymbol{W}=5400+210$
$=5600 \mathrm{~J} \checkmark 2$ sig fig
CE if used their answer to i rather than 5400J
Accept 5700 J (using 5440 J)
Sig fig mark is an independent mark
(d) Time of travel $=$ distance $/$ average speed $=3.5 / 1.1=3.2 \mathrm{~s} \checkmark$ 5600
$P_{\text {ave }}=3.2=1750 \mathrm{~W}$ $P_{\text {max }}=P_{\text {ave }} \times 2=3500 \mathrm{~W} \checkmark$

OR accelerating torque $=T=W / \theta$
$=5600 / 40=140 \mathrm{Nm}$ $\mathrm{P}=T \omega_{\text {max }}=140 \times 25=3500 \mathrm{~W}$

CE from ii
1780 W if 5650 J used

M4. (a) (i) $T=F r=32 \times 0.15$

$$
=4.8 \mathrm{~N} \mathrm{~m}
$$

(ii) $\quad \omega=2600 \times 2 \pi / 60\left(=270 \mathrm{rad} \mathrm{s}^{-1}\right) \checkmark$ accept $272 \mathrm{rad} \mathrm{s}^{-1}$
total torque $=4.8+1.2=6.0 \mathrm{~N} \mathrm{~m}$

$$
\begin{aligned}
P & =T \omega \\
& =6.0 \times 270=1620 \mathrm{~W}
\end{aligned}
$$

(b) $\quad \alpha=\frac{270-0}{8.5}=32 \mathrm{rad} \mathrm{s}^{-2}$
$I=T / \alpha=\frac{1.2}{32}=0.038 \quad \checkmark \mathrm{~kg} \mathrm{~m}^{2} \checkmark$
OR use of $\Theta=1 / 2\left(\omega_{2}+\omega_{1}\right) t(=1150 \mathrm{rad}) \checkmark$
and $1 / 2 / \omega^{2}=T \Theta$ leading to $\mathrm{I}=0.038 \checkmark \mathrm{~kg} \mathrm{~m}^{2}$
(c) $E=1 / 2 / \omega^{2}$

$$
=0.5 \times 0.038 \times 270^{2}=1400 \mathrm{~J}
$$

$$
P=E / t=1400 / 0.005=280 \mathrm{~kW}
$$

